

Metagenomics Does exist the easy way how to study the microbiome?

Petra Videnska RECETOX, Masaryk University

Microbiome

Culturable bacteria

Bacterial culture

Biochemical test

Isolation of pure cultures

Microscopy

Molecular fingerprint methods

Uncultarable bacteria

Study of DNA – uncultered bacteria (>99,9%)

Metagenomics

Metagenomics

NGS Next generation sequencing

02014 Illumina, Inc. All rights reserved

Available platforms

- 454 (Roche)
- SOLiD (Life Technologies)
- Illumina (Illumina)
- Ion Torrent (Life Technologies)
- PACBIO, Sequel System (Pacific BioSciences)
- MiniON (Oxford Nanopore Technologies)
- BGISEQ-500 (BGI)

Illumina sequencing overview

Sequencing by Synthesis (SBS) Overview

illumina⁹

Illumina sequencing overview

Illumina sequencing overview

The MiSeq sequences the DNA clusters using Illumina's Sequencing By Sythesis (SBS) Chemistry which relies on Reversible Terminator Chemistry (RTC).

- All 4 labeled nucleotides in 1 reaction
- Higher accuracy

Microbiome studies – methological problems

- Inconsistent approaches microbiome studies
- The composition of bacteria is influenced
 - Sampling method
 - Sample storage conditions
 - DNA extraction
 - Primers targeting different parts of 16S rRNA gene
 - Bioinformatics analyses

Microbiome function

Microbiome and health

Our Study Design

DNA Extraction

gDNA quality check

gDNA quality check

Fragment analyzer

PCR inhibitors presence

Cycles

S

Cycles

 Relative F

- qPCR \rightarrow primers targeted bacterial DNA (16S rDNA)
- series of gDNA dilution
- Calculated slope and efficiency (= $10^{(-1/slope)}$ -1) of the reaction

Human DNA presence

- qPCR → primers targeted bacterial DNA (16S rDNA) and human DNA (protein kinase)
- Relative quantification proportion of human DNA to bacterial DNA (2^{dCt})

16S rDNA Sequencing

Library preparation

2922

AAAA02020713.1.1297 121.53.2_3037769

>AAQL01001287.5.1442 120.51.1_1130405

Teosoparta TriboccArt9600058AACCT04ACCt05AACCC020T6AA059AAAA05CCT0505TB TAACTCT14CTCT015AAA054AAA04ACAT05TC05AAA75AAAA05CC03CTAACCT05CGT04A GCC0205TAAACGT04A06963AAACCT05C05AATAT10505C15AA805C030T4ACCT05C076AA AACTC16ACT04AAAAAAAACTCT0CTTAAA050GAAAACT03AA6CAACTC34A5TC05AAA9A TAATC16AACT04AAAAAACTCT0CTTAAA50C05AAAATT05AA60AAACAACT05GC0AAA6AC TTAAT05AAATTCCAATTAAG05T05AAT5C07AAAAAATT05AA60AAACAACT05GC0AAA6CAACAACA

>AAQL01006929.1.1434 113.52.2_2457824

>AA5G02010287.435.1901 120.82.2_3909221

TBGGGAATTTTCCGCAATBGGCGAAAGCCTBACGGAGCATBCCGCGTGGAGGTAGAABGCCTACGGGGCG TGAACTCTTTTCCCGGAGAGAGAGCATGACGGTATTCGGGGAATAGACATCGGCTACCTGTTGCCACAGG CCGCGGTAATACAAGGATGCAAGCGTATCCGGAATGATGGCGTAAAGCGTGTTGCCACAGG CCGCGGTCAAATACAAGGATGCAAGCGTATCCGGAATGATGGTGGAAGTACGTAGTGGCTCTTTAGG TGCCGCGTCAAATGCAAGGCTACCCTGGACAGCGTGGAACTACCAAGCTGGAGTACGGTAGGGGC

Sequencing results

Number of sequences per sample after QC		
Average:	51 594	
Max.:	78 498	
Min.:	30 012	

Stool diversity

DNA isolation vs bacterial cell wall type

Statistically signifficant different bacteria

Gram positive bacteria Gram negative bacteria

Bacterial composition

Bacterial composition

DNA isolation

Individual variability

Individual variability

Individual variability

Summary

	PS (Powerlyzer PowerSoil DNA isolation Kit)	QS (QIAamp DNA Stool MINI Kit)
DNA yield	\checkmark	11*
DNA purity	1	2
DNA quality	2	↓
Presence of inhibitors	\checkmark	\downarrow
Presence of human DNA	3	3
Observed species	4	4
G+ bacteria isolation	5	↓

*There is no statistical significant correlation between DNA yield and observed species

The effect of extraction kits increases with higher taxonomical level !!!Complication in comparison between different studies!!!

THANKS FOR YOUR ATTENTION

